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Abstract

This paper presents new results for applying the sequential solution method to the black-oil reservoir simulation with

unstructured grids. The fully implicit solution method has been successfully applied to reservoir simulation with un-

structured grids. However, the complexity of the fully implicit method and the irregularity of the grids result in a very

complicated structure of linear equation systems (LESs) and in high computational cost to solve them. To tackle this

problem, the sequential method is applied to reduce the size of the LESs. To deal with instable problems caused by the

low implicit degree of this method, some practical techniques are introduced to control convergence of Newton–

Raphson�s iterations which are exploited in the linearization of the governing equations of the black-oil model. These

techniques are tested with the benchmark problem of the ninth comparative solution project (CSP) organized by the

society of petroleum engineers (SPE) and applied to field-scale models of both saturated and undersaturated reservoirs.

The simulation results show that the sequential method uses as little as 20.01% of the memory for solving the LESs and

23.89% of the total computational time of the fully implicit method to reach the same precision for the undersaturated

reservoirs, when the same iteration control parameters are used for both solution methods. However, for the saturated

reservoirs, the sequential method must use stricter iteration control parameters to reach the same precision as the fully

implicit method.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid flow models in porous media involve large systems of nonlinear, coupled and time-dependent

partial differential equations. An important problem in reservoir simulation is to develop stable, efficient,
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robust, and accurate solution methods for solving these coupled equations. Essentially, there are three types

of solution methods in reservoir simulation: the IMPES (implicit in pressure and explicit in saturation), the

fully implicit, and the sequential.

The IMPES solution method [19] works well for reservoir simulation of two-phase incompressible flow.

Recently, we have developed an improved IMPES method [5], which is capable of solving two-phase coning

problems. However, the IMPES method is not efficient and robust for fluid flows having strong nonlin-

earities, such as the black-oil and compositional flows. To improve the efficiency of the IMPES method,

adaptive IMPES methods were developed [18,24], which use a switching criterion, based on the Courant–
Friedrichs–Lewy (CFL) condition, to determine when grid blocks should be treated implicitly and when

they should be treated explicitly. An IMPES stability criterion for the multidimensional black oil and

compositional models was discussed in [7] as well.

The fully implicit solution method, which is also called the simultaneous solution method [8], solves all

of the coupled nonlinear equations simultaneously. This method is stable and can take very large time steps,

while its stability is maintained. However, this method requires lots of memory and has high computational

cost, compared with the IMPES and sequential methods. It will become very challenging for huge simu-

lation models.
The sequential solution method [16] splits the coupled system of nonlinear governing equations of

reservoir simulation up into individual equations and solves each of these equations separately and im-

plicitly. It greatly reduces the size of the resulting LESs and results in low memory and computational cost

to solve these LESs. This method is less stable but more efficient than the fully implicit method, and more

stable but less efficient than the IMPES method. It has been recently applied to the numerical solution of

complex flow problems such as the black-oil and compositional models [4,6,20,21]. However, in these

papers, numerical results have been obtained for one-dimensional model problems.

To model accurately and efficiently irregularly geometrical and geological features and flow patterns of a
reservoir, gridding techniques of unstructured girds and various discretization methods have been devel-

oped in the past 10 years [1]. Heinrich [11] introduced the perpendicular bisector (PEBI) method. Forsyth

[9] developed control volume finite element (CVFE) grids and the CVFE method for thermal reservoir

simulation. Fung et al. [10] applied them to commercial thermal reservoir simulators. Verma and Aziz [22]

improved the CVFE method to deal with permeability tensors using three-dimensional CVFE grids. Li et al.

[12,14] recently introduced the control volume function approximation (CVFA) method into the black-oil

reservoir simulation using arbitrarily shaped grids and checked the stability and accuracy of this method to

deal with the ‘‘bubble point’’ and coning problems [15]. For reservoir simulation using the black-oil model
on unstructured grids, only the fully implicit solution method has been used for solving the governing

equations of this model. Because the connection between grid blocks is irregular for unstructured grids,

the Jacobian matrices for these grids are much more complicated than those for structured grids.

Furthermore, the full implicity and grid irregularity require a great amount of memory and high compu-

tational cost to solve the LESs. Particularly, for field-scale reservoir simulation, this becomes a very serious

problem.

In this paper, we attack the above problem from a different angle. We apply the sequential solution

method to the black-oil reservoir simulation with unstructured grids to reduce memory and computational
cost. As noted, because of the low implicit degree, this method may introduce instability in solution. Some

rules are introduced to select time steps and to perform time step cutting for a modeling process. In par-

ticular, practical termination conditions are adopted in the Newton–Raphson iteration procedure which is

used for solving nonlinear equations. Also, a special technique is used for dealing with the bubble point

problem. To deal with arbitrarily shaped unstructured grids, we apply the CVFA method to discretize the

governing equations of the black oil model, since this method can directly discretize these equations on

arbitrarily shaped control volumes and can guarantee that the flux is continuous across an interface be-

tween two neighboring control volumes. We test this approach with both the ninth SPE CSP benchmark
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problem and field-scale simulation models by comparing the simulation results from it with those from the

fully implicit method.

The rest of this paper is organized as follows. Section 2 presents the black-oil model, its linearization by

the Newton–Raphson procedure, and its discretization by the CVFA method. The sequential solution

method is described in Section 3. The practical techniques to handle stability and convergence are intro-

duced in Section 4. Numerical experiments are presented in Section 5. Conclusions are given in Section 6.

Finally, the linearization and discretization of the black-oil model and the derivation of pressure equations

are described in Appendixes A, B, and C, respectively.
2. The black-oil model and its discretization

The black-oil model is a simplified compositional model. For this model, it is assumed that the hy-

drocarbon components can be divided into methane and a heavy oil component in a stock tank at the

standard pressure. It is also assumed that no mass transfer occurs between the water phase and the other

two phases (oil and gas) and no volatile oil exits.
Let / and K denote the porosity and permeability of a porous medium X � R3, sa, la, pa, ua, Ba, and Kra

be the saturation, viscosity, pressure, volumetric velocity, formation volume factor, and relative perme-

ability of the a phase, a ¼ w; o; g, respectively, and Rso be the gas solubility. Then the mass conservation

equations of the black-oil model are [2]
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for the gas component, where qbS is the density of the b component at standard conditions (stock tank),
b ¼ W;O;G, qa is the mass flow rate of the a phase at wells, and

qg ¼ qGg þ qGo :

The volumetric velocity of the a phase is represented by Darcy�s law

ua ¼ �KKra

la

rUa; a ¼ g; o;w; ð2:4Þ

where the potential Ua of the a phase is given by

Ua ¼ pa � qa~ggD; a ¼ w; o; g; ð2:5Þ

qa represents the density of the a phase, ~gg is the gravitational constant, and D is the depth function. The

saturations of the water, oil, and gas phases satisfy the constraint

sw þ so þ sg ¼ 1: ð2:6Þ
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Furthermore, the phase pressures are related by the capillary pressures pcow and pcgo:

pcow ¼ po � pw; pcgo ¼ pg � po: ð2:7Þ

Finally, the mass flow rates of wells are given by Peaceman�s formulas [17]
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where dk;m ¼ dðx� xk;mÞ (the Dirac delta function at xk;m), Nw is the total number of wells, Mw;k is the total

number of perforated zones of the kth well, sk;m, Dzk;m, and xk;m are the skin factor, segment length, and

central location of the mth perforated zone of the kth well, rc;k denotes the wellbore radius of the kth well,

re;k;m is the drainage radius of the kth well at the grid block in which xk;m is located, respectively, and pbh;k is
the bottom hole pressure of the kth well at datum Dw;k.

The model is completed by specifying boundary and initial conditions. In this paper we consider no flow
boundary conditions

ua � n ¼ 0; a ¼ w; o; g; x 2 oX; ð2:9Þ

where n is the outward unit norm to the boundary oX of the reservoir domainX. The initial conditions depend
on the state of a reservoir.When all gas dissolves into the oil phase, there is no gas phase present, i.e., sg ¼ 0. In

such a case, the reservoir is said to be in the undersaturated state. If all three phases co-exist, the reservoir is

referred to as in the saturated state. In the undersaturated state, we use p ¼ po, sw, and pb as the unknowns,
where pb is the bubble point pressure; see Appendix A. The corresponding initial conditions are

pðx; 0Þ ¼ p0ðxÞ; x 2 X;

pbðx; 0Þ ¼ p0bðxÞ; x 2 X;

swðx; 0Þ ¼ s0wðxÞ; x 2 X:

ð2:10Þ

In the saturated state, we employ p ¼ po, sw, and so as the unknowns. In this case, the initial conditions

become

pðx; 0Þ ¼ p0ðxÞ; x 2 X;

swðx; 0Þ ¼ s0wðxÞ; x 2 X;

soðx; 0Þ ¼ s0oðxÞ; x 2 X:

ð2:11Þ

Various well constraints need to be taken into account. For an injection well, two kinds of well con-

straints are permitted. They are, respectively, the constant bottom hole pressure and constant injection flow

rate. In the former case, the bottom hole pressure is fixed:

pbh;k ¼ Pbh;k; ð2:12Þ
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where k is the sequential number of the well which has this kind of well control and Pbh;k is the given bottom

hole pressure of this well. In the latter case, the injection flow rate controls for water and gas injection wells

are, respectively,
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where QW;k and QG
g;k are the given water and gas injection rates for the water and gas injection rate controls,

respectively, Kramax is the maximum relative permeability of the a phase, a ¼ w; g, Vk;m denotes the control

volume in which the mth perforated zone of the kth well falls, and the well index WIk;m is defined as

WIk;m ¼ 2pDzk;mK
lnðre;k;m=rc;kÞ þ sk;m

:

For a production well, there are three constraints: a constant bottom hole pressure, a constant total flow
rate, and a constant total liquid production rate. The constant bottom hole pressure takes the same form as

(2.12). For an oil production well, the oil production rate control is
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where QO;k is the given oil production rate. For a gas production well, the production rate control is
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where QG
k is the given gas production rate of the kth well. Note that the gas–oil ratio (GOR) at a

perforated zone of a well must be less than a certain limit; over this limit, that perforated zone needs to

be shut down. The liquid flow rate control is only applicable for an oil production well and is of the

form
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where QL;k is the given total liquid production rate of the kth well. Also, the water cut, which is defined as

the ratio of the water production rate to the sum of the water and oil production rates, at a perforated zone

of a well with this kind of well constraint must be less than a certain limit; otherwise, that perforated zone

needs to be shut down.

We use both the sequential and fully implicit methods to solve the above nonlinear equations and apply

the CVFA method to discretize them in space. To model accurately the geometrical and geological features
of a reservoir, a hybrid grid needs to be used for reservoir simulation. Since the CVFA method can directly
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discretize an equation on an arbitrarily shaped grid and is especially suitable for the hybrid grid reservoir

simulation, we apply this method to dealing with the discretization of the governing equations of the black-

oil model and the treatment of wells.

We very briefly review the discretization of the black-oil model using the CVFA and the linearization

of this model using Newton–Raphson�s procedure. For more details, refer to Appendixes A and B.

Since the unknowns on control volumes can be different under different states of a reservoir, the in-

tegral forms of the governing equations on each control volume are solved, respectively, under the

undersaturated and saturated states. In the undersaturated state, the lth iteration values of the water
and oil potentials on boundary eij of a control volume Vi at the ðnþ 1Þth time step are approximated

by
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where l refers to the iteration number of Newton–Raphson�s iterations, /i
j;rðxÞ; r ¼ 0; 1; . . . ;Ri;j, are the

shape functions, Rij þ 1 is the total number of interpolation points for ðUahÞðnþ1Þ
l on eij, and ðUi
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denotes the nodal value of ðUahÞðnþ1Þ
l , a ¼ w; o. Since dp, dpb, and dsw at grid points in all time steps need to

be obtained for this state, we approximate the lth iteration values of these variables at the ðnþ 1Þth time

step by
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We substitute these interpolants into the linearized governing equations given in Appendix A.1 to obtain

the discrete equations, which are given in Appendix B. In these discrete equations, the lth iteration values of

increments ðdpij;rÞ
ðnþ1Þ
l , ðdsiwj;r

Þðnþ1Þ
l , and ðdpibj;rÞ

ðnþ1Þ
l at the (nþ 1)th time step at nodes xi

j;r are the unknowns

to be solved for. For a well with a flow rate control, the increment of its bottom hole pressure also needs to

be obtained. After these increments are obtained, the iteration solutions at grid point xi and the bottom
hole pressure of the kth well are updated by
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Similarly, in the saturated state, we approximate the lth iteration values of the water, oil, and gas potentials

at the (nþ 1)th time step by
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and approximate the unknowns ðdpÞðnþ1Þ
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We substitute them into the linearized governing equations in Appendix A.2 to get the discrete equations,

which are listed in Appendix B. The iteration solution values at grid point xi and the kth well, which has a

flow rate control, are updated by
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We end with a remark that different states at different places in a reservoir can occur; i.e., the saturated

and undersaturated states can co-exist. In this case, the governing equations on each control volume are

linearized and discretized according to the state in this volume.
3. Sequential solution method

The idea of the sequential solution method is to decouple the governing equations into the pressure, water

saturation, and gas saturation equation in the saturated state (or into the pressure, water saturation, and

bubble point pressure equations in the undersaturated state) and to solve them separately and implicitly in

different states. This can be accomplished with the linearized and discretized equations given in Appendix B.

3.1. Pressure equations

The pressure equation can be obtained from the governing equations and well control equations given in
Appendix B. For a given grid block i, ðdsiwj;r

Þðnþ1Þ
l , ðdsioj;rÞ

ðnþ1Þ
l (for the saturated state) or ðdpibj;rÞ
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undersaturated state) are set to zero on the left-hand sides of these equations, and these unknowns are

eliminated on the right-hand sides of these equations in an appropriate way to obtain the pressure equation;

see Appendix C for more details.
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The well controls are implicitly treated; i.e., we linearize the control equations of wells. If the kth well has

the control of the bottom hole pressure, from (2.12) we set

dpbh;k ¼ 0: ð3:1Þ
For injection wells, we linearize the well control equations in (2.13) into
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for the gas injection rate control of the kth well, where qw;k;m and qg;k;m are calculated by
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where qGo;k;m and qo;k;m are calculated by

qGo;k;m ¼ WIk;m
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loBo

pbh
h

� po � qo~ggðDw;k � DÞ
i
;

qo;k;m ¼ WIk;m
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h

� po � qo~ggðDw;k � DÞ
i
:

The pressure equations given in Appendix C and the well control Eqs. (3.2)–(3.4) are solved si-

multaneously to get the pressure increments at grid points and the bottom hole pressure increments of

wells.
3.2. Water saturation equation

If we substitute the pressure increments obtained from the pressure equations into the governing
equation of the water component given in Appendix B, we can get the water saturation equation
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for control volume Vi , i ¼ 1; 2; . . . ;N , where
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;

where xi is the centroid of Vi and cr and /a are the compressibility and porosity of rock, respectively. We

solve Eq. (3.5) to obtain the water saturation increment ðdswÞðnþ1Þ
l at grid points.
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3.3. Oil saturation and bubble point pressure equations

Since the third unknown at any grid point is different under the different state of a reservoir, the oil

saturation equation and bubble point pressure equation are derived under the saturated and undersaturated

states, respectively.

For the saturated state, if the oil phase exists, the knowns ðdpÞðnþ1Þ
l , ðdpbhÞðnþ1Þ

l , and ðdswÞðnþ1Þ
l at grid

points are substituted into the governing equation of the oil component given in Appendix B to obtain the

oil saturation equation
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for control volume Vi , i ¼ 1; 2; . . . ;N , where
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:

For the undersaturated state, the knowns ðdpÞðnþ1Þ
l , ðdpbh;kÞðnþ1Þ

l , and ðdswÞðnþ1Þ
l at grid points are

substituted into the governing equation of the gas component given in Appendix B to obtain the bubble

point pressure equation
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where
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4. Convergence control

As noted, compared with the fully implicit solution method, the sequential solution method has

lower implicity. It may introduce instability into Newton–Raphson�s iterations. Hence some practical

techniques are needed for selecting time steps and controlling convergence of the Newton–Raphson
iterations.
4.1. Treatment of the ‘‘bubble point’’ problem

It is very important to deal properly with the bubble point problem for controlling convergence of

Newton–Raphson�s iterations. The state of a reservoir can change from saturated to undersaturated or vice

versa. To determine a proper state during the state transition is the bubble point problem. If the bubble

point problem can promptly be recognized and reasonable unknowns can be selected for different states of a

reservoir in a Newton–Raphson iteration, it will benefit for determining a proper convergent direction and

speed up convergence.

To treat properly the bubble point problem, we figure out the triggers which cause the transition of states

of a reservoir using the state machine [3], shown in Fig. 1. We can see that a point in the reservoir can stay
in either the saturated state or the undersaturated state. Furthermore, from the lth iteration to the ðlþ 1Þth
iteration in a Newton–Raphson iteration process at the ðnþ 1Þth time step, it can stay in the same state or

transfer to another state. The constraint conditions and the triggers are different in different states. In the

undersaturated state, the constraint conditions are
ðswÞðnþ1Þ
l þ ðsoÞðnþ1Þ

l ¼ 1;

ðpÞðnþ1Þ
l > ðpbÞðnþ1Þ

l :
ð4:1Þ



Undersaturated State 
 
 
 
 
 
 
 
 
Exit/(δso)l

(n+1)=-δ 
 

Saturated State 
 
 
 
 
 
 
 
 
Exit/(δpb)l

(n+1)=-∆ 
 

(pb)l
(n+1)+(δpb)l

(n+1)>(p)l+1
(n+1) 

(pb)l
(n+1)+(δpb)l

(n+1)≤(p)l+1
(n+1) 

(sg)l+1
(n+1)  ≥ 0 

(p)l+1
(n+1) =(p)l

(n+1)+(δp)l
(n+1) 

(sw)l+1
(n+1) =(sw)l

(n+1)+(δsw)l
(n+1) 

(so)l+1
(n+1) =( so)l

(n+1)+(δso)l
(n+1) 

(pb)l+1
(n+1)= (p)l+1

(n+1) 

(sg)l+1
(n+1)< 0 

(p)l+1
(n+1) =(p)l

(n+1)+(δp)l(n+1) 
(sw)l+1

(n+1) =( sw)l
(n+1)+(δsw)l

(n+1) 
(so)l+1

(n+1) =1-(δsw)l+1
(n+1) 

(pb)l+1
(n+1) =( pb)l

(n+1)+(δpb)l
(n+1) 

Fig. 1. State machine of the black-oil reservoir simulator.
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On the other hand, in the saturated state, the constraint conditions are

ðswÞðnþ1Þ
l þ ðsoÞðnþ1Þ

l þ ðsgÞðnþ1Þ
l ¼ 1;

ðpÞðnþ1Þ
l ¼ ðpbÞðnþ1Þ

l :
ð4:2Þ

The trigger that causes the transition from the undersaturated state to the saturated state is

ðpbÞðnþ1Þ
l þ ðdpbÞðnþ1Þ

l > ðpÞðnþ1Þ
lþ1 ; ð4:3Þ

and the trigger causing the transition from the saturated state to the undersaturated state is

ðsgÞðnþ1Þ
lþ1 < 0: ð4:4Þ

To deal properly with the bubble point problem, we need to check the triggers to determine whether a

location in a reservoir stays in the old state or transfers to a new state. Then, we let the unknowns satisfy the

constraint conditions of the corresponding states. When the reservoir pressure at a location in a reservoir

drops below the bubble point pressure, it can be found that ðpbÞðnþ1Þ
l þ ðdpbÞðnþ1Þ

l > ðpÞðnþ1Þ
lþ1 , the dissolved gas

will come out from the oil phase, and the oil saturation will decrease. It triggers the state to transfer from

the undersaturated state to the saturated state at this location. In order to enter the new state, ðdsoÞðnþ1Þ
l is

set with a small negative value so that the gas saturation is greater than zero and the dissolved gas comes

out. After it enters the saturated state, the unknowns of the grid point are updated to satisfy the constraint

condition (4.2). Similarly, if the reservoir pressure at a location increases high enough to have all the gas
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dissolve into the oil phase, the state changes from the saturated state to the undersaturated state at this

location. Correspondingly, it will be found that ðsgÞðnþ1Þ
lþ1 < 0. This will trigger the state to transfer from the

saturated state to the undersaturated state. In order to guarantee that the oil phase pressure will be greater

than the bubble point pressure in the new state, ðdpbÞðnþ1Þ
l is set with a small negative value. After it enters

this new state, the unknowns are updated to meet the constraint condition (4.1) of the undersaturated state.

4.2. Selection of time steps

Selecting reasonable time steps is another key to control convergence of Newton–Raphson�s iterations
and the computational speed of a simulation process. If time steps are too small, it will lead to too many

time steps, Newton–Raphson iterations, and ORTHOMIN iterations (the linear solver used in this paper),

so the computational cost increases. If time steps are too large, it will results in divergence of a Newton–
Raphson iteration process, time step cutting, and wasting computational time.

To select suitable time steps, from our experimental experiences we have adopted the following empirical

rules:

Rule 1. With a given maximum time step Dtmax and a given minimum time step Dtmin, the time step to be

determined Dtnþ1 must satisfy that Dtmin 6Dtnþ1 6Dtmax.

Rule 2. In the saturated state, Dtnþ1 is bounded by

Dtnþ1 6Dtn min 3;
ðdP Þmax

ðdpÞðnÞmax

;
ðdSwÞmax

ðdswÞðnÞmax

;
ðdSgÞmax

ðdsgÞðnÞmax

( )
; ð4:5Þ

where ðdP Þmax, ðdSwÞmax, and ðdSgÞmax are the allowable maximum values of the pressure, water

saturation, and gas saturation increments, respectively, and ðdpÞðnÞmax, ðdswÞðnÞmax, ðdsgÞðnÞmax are the

maximum values of these increments at the nth time step. In the undersaturated state, (4.5) becomes

Dtnþ1 6Dtn min 3;
ðdP Þmax

ðdpÞðnÞmax

;
ðdSwÞmax

ðdswÞðnÞmax

;
ðdPbÞmax

ðdpbÞðnÞmax

( )
; ð4:6Þ

where ðdPbÞmax is the allowable maximum value of the bubble point pressure increment.

Rule 3. Dtnþ1 should guarantee that the simulation time can reach the given period times.

With these rules, the time step can automatically be selected. The choice of Dtnþ1 also needs to take into

account convergence of Newton–Raphson�s iterations. If the number of Newton–Raphson�s iterations is

greater than a given maximum number with Dtnþ1 selected with Rules 1–3, the determined time step may be
too large and it needs to be reduced. We first cut Dtnþ1 by Dtnþ1=3. Then the oil phase pressure, bubble point

pressure, water saturation, and oil saturation at the nth time step are taken as the first iteration values of

Newton–Raphson�s iterations at the ðnþ 1Þth time step.
4.3. Termination of Newton–Raphson’s iterations

To terminate a Newton–Raphson iteration process, some important factors must be considered. First,

the iteration number must be greater than a given minimum number and smaller than a given maximum

number. Second, the iteration values of the unknowns and the right-hand vectors of the linear equation

systems to be solved are also used as part of the termination condition. The absolute iteration values of the

increments of pressure, water saturation, oil saturation or bubble point pressure pressure, and the bottom

hole pressures of wells have to be less than their respective allowable maximum limits. Also, the ratio of the

infinite norm of the right-hand side vector of an LES to the maximum absolute value of the sum of the oil
and gas component flow rates of perforated zones of wells have to be less than a certain given limit. Mass
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balance errors are not used as one of the termination conditions of the Newton–Raphson iterations, but are

monitored during a computational process. For the sequential method, the termination conditions are

checked after all unknowns are obtained.
5. Numerical experiments

To test convergence, stability, accuracy, and computational speed of our sequential solution method in
the treatment of large-scale simulation problems with strong heterogeneities, non-zero capillary pressures,

and free gas, we use the ninth SPE CSP benchmark problem [13] and real field-scale simulation models on

unstructured grids. Both saturated and undersaturated reservoirs are used to test our method and check its

practical value. For the undersaturated reservoir, the nonlinearity of the governing equations caused by the

high compressibility and low viscosity of the gas component is relatively weaker than that for the saturated

reservoir. In addition, there is no bubble point problem for the undersaturated reservoir. Since the se-

quential method has lower implicity, it may be applicable to the undersaturated reservoir, not to the sat-

urated reservoir. Therefore, it is necessary to test this method with both types of reservoirs.

5.1. An SPE benchmark problem

The benchmark problem of the ninth CSP [13] is a challenging problem due to the following reasons:
First, the permeability of the reservoir is generated from geostatistical modeling, which can lead to a strong

heterogeneity. Second, the water–oil capillary pressure has discontinuity when the water saturation is 0.35,

which may cause divergence of the Newton–Raphson iterations. Third, the capillary pressure has a tail

which does not extend to the water saturation 1.0.

We briefly state the geological and physical data; for more details on these data, see [13]. A grid of

rectangular parallelepipeds for the reservoir under consideration is given in Fig. 2. Its dimensions are

7200� 7500� 359 ft3. The depth to cell ð1; 1; 1Þ of this rectangular grid is 9000 ft. It has a dip in the

x-direction of 10�. The gas/oil (GOC) and water/oil contacts (WOC), respectively, locate at 8800 and
9950 ft. The reservoir has 15 layers.

In the initial state, the reservoir reaches equilibrium with an initial reservoir pressure of 3600 psia at 9035

ft and with a reservoir temperature of 100 �F. The bubble point pressure of oil is 3600 psia. At 1000 psi

above the bubble point pressure Pb, Bo is 0.999 times that of Bo at Pb. The density of the stock tank oil is

0.7296 g/cc. The oil pressure gradient is approximately 0.3902 psi/ft at 3600 psia. The stock tank density of

water is 1.0095 g/cc, with a water formation volume factor Bw at 3600 psia of 1.0034 RB/STB yielding a

water gradient of approximately 0.436 psi/ft. The rock compressibility is 1:0� 10�6 1/psi. The Stone II

model is used for calculating the relative permeability of the oil phase when three phases co-exist.
There are onewater injector and 25 producers, whosewellbore radii are 0.50 ft. Their locations are shown in

Fig. 2. The injector is perforated at layers 11–15, and the producers are perforated at layers 2–4. The water

injection rate is 5000 STB/D with a maximum bottom hole pressure of 4000 psia. Initially, the oil production

rate of the producers is set to 1500 STB/D. They are reduced to 100 STB/D at 300 days. Then they are raised to

1500 STB/D until the end of the simulation at 900 days. The reference depths of all wells are 9110 ft.

We compare: (a) the field oil production rate vs. time, (b) the field GOR vs. time, (c) the field water

production rate vs. time, (d) the field gas production rate vs. time, (e) the water injection rate vs. time, and

(f) the oil rate at well 21.
To check accuracy, stability, and convergence of our sequential method combined with the CVFA

method, we also solve the same problem using the fully implicit method combined with either the CVFA or

9-point finite difference (FD) methods. We also compare our results with those generated by VIP-EX-

ECUTIVE, which is a three-dimensional, three-phase reservoir simulator. For the CVFA method, we use
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Fig. 3. A hexagonal prism.

Fig. 2. The reservoir of the ninth CSP problem.
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hexagonal prisms (hexagons in the xy-plane and rectangles in the z-coordinate direction; see Fig. 3) as base
grid blocks since the reservoir considered has a layer structure. The hexagons can reduce grid orientation

effects [14]. In order for the wells to locate at the destination positions, the base grid blocks are adjusted

with the techniques of corner point correction and local grid refinement [12]. The total number of grid

blocks is 765� 15, where 15 is the number of layers. The ORTHOMIN iterative algorithm [23] is used to

solve the systems of linear equations, and the incomplete LU(0) factorization is used as preconditioners.

The maximum saturation and pressure changes during the computational processes are set to 0.05 and 150

psi, respectively, for the fully implicit method, while the maximum saturation change for the sequential
method is set to 0.02 to control convergence.

Fig. 4 is the gas saturation distribution of the first layer at 50 days, where sg is in one of the intervals

½0; 0:02�, ½0:02; 0:04�, ½0:04; 0:06�, and ½0:06; 0:08� from the dark to light color. The gas saturation distri-

bution is quite unusual. It is caused by the high heterogeneity of the reservoir, whose permeability has a

lognormal distribution. Figs. 5–11 are the comparative results. They show that the results of the sequential

method with unstructured grids match those of the fully implicit method with unstructured grids very well.

These results are closer to those from the fully implicit method combined with the FD method than to those

of VIP-EXECUTIVE. The reason may be that there are minor differences between our simulator and VIP-
EXECUTIVE in the treatment of the well models, linearization of conservation equations, time step

control, iteration control, or type of grids used. From these plots, we see that the reservoir pressures match

perfectly between the CVFA and FD methods, as shown in Fig. 10; there exist slight differences for other

quantities. Since this benchmark problem has a very strong heterogeneity generated by geostatistical
Fig. 4. Gas saturation at 50 days.



 

 

 

 

Fig. 5. Comparison of oil production rates.

 

 

Fig. 6. Comparison of GOR vs. time.
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modeling, unstructured grids can more accurately describe the heterogeneity of the reservoir, which is

reflected in the production rates. Table 1 shows that the sequential method just takes 28% of the CPU time

of the fully implicit method to solve the linear equations. The total CPU time is reduced by 45.5%.



 

Fig. 7. Comparison of field gas rates.

 

 

 

 

Fig. 8. Comparison of field water rates.
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5.2. An undersaturated reservoir

The simulation model comes from a development scheme design for water flooding of an oil field. The

dimensions of this oil field are 6890 ft� 6726 ft� 4227 ft. It has four geological layers with an irregularly



 

Fig. 9. Comparison of injected water rates.

Fig. 10. Comparison of average reservoir pressure.
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shaped boundary, top, and base and with reservoir temperature 165.2 �F. The absolute permeability and

compressibility of rock and the thickness of the layers are variant in space. The water, oil, and oil viscosity

compressibilities are 3:1� 10�6, 3:1� 10�6, and 0 psi�1, respectively. The stock-tank densities for oil and



Fig. 11. Comparison of oil rates for well 21.

Table 1

Comparison of computational cost for the ninth CSP problem

Solution method Fully implicit +CVFA Sequential +CVFA

CPU time for LES (s) 4141.92 1174.48

Total CPU time (s) 5172.76 2819.80

Number of time steps 119 179

Number of time step cuts 0 0
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water are, respectively, 60.68 and 62.43 lbm/cu ft. The gas specific gravity at the standard condition (ex-

pressed as the ratio of the molecular weight of the gas to the molecular weight of air) is 0.5615. The depths

to the GOC and WOC are 3666 and 4593 ft, respectively. The reservoir is initially at capillary/gravity

equilibrium with a pressure of 1624 psia at depth 3684 ft. The capillary pressures at the GOC and WOC are
zero. Other PVT and rock data are given in Tables 2–4 where Zg is the gas deviation factor, krow is the
Table 2

PVT property data

P
(psia)

Bo

(RB/STB)

lo

(cp)

Rso

(SCF/STB)

Bw

(RB/STB)

lw

(cp)

Zg lg

(cp)

87.02 1.0057 52.8 6.74 1.022 0.42 0.993 0.0151

435.11 1.0208 37.6 9.19 1.022 0.42 0.966 0.0141

870.23 1.0415 26.3 83.66 1.022 0.42 0.936 0.0132

1305.34 1.0632 19.7 130.25 1.022 0.42 0.913 0.0141

1624.42 1.0795 15.5 165.63 1.022 0.42 0.898 0.0151



Table 3

Saturation function data for water/oil

sw Krw Krow pcow (psi)

0.2400 0.000 1.000 2.4656

0.3050 0.001 0.809 1.1603

0.3266 0.002 0.707 0.8702

0.3483 0.004 0.606 0.5802

0.3699 0.007 0.513 0.3916

0.3915 0.010 0.421 0.2321

0.4131 0.014 0.349 0.1450

0.5000 0.037 0.260 0.0725

0.6000 0.087 0.200 0.0435

0.7000 0.155 0.150 0.0232

0.8000 0.230 0.100 0.0000

0.9000 0.400 0.000 0.0000

1.0000 1.000 0.000 0.0000

Table 4

Saturation function data for gas/oil

sg Krg Krog pcgo (psi)

0.00 0.000 1.0000 0.0

0.04 0.000 0.4910 0.0

0.10 0.001 0.2990 0.0

0.20 0.003 0.1200 0.0

0.22 0.007 0.1030 0.0

0.29 0.015 0.0400 0.0

0.33 0.030 0.0210 0.0

0.37 0.065 0.0087 0.0

0.40 0.131 0.0021 0.0

0.46 0.250 0.0000 0.0

0.76 1.000 0.0000 0.0
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relative permeability the oil phase for an oil–water system, and krog is the relative permeability of the oil

phase for a gas–oil system.

There are 50 oil production wells and 20 water injection wells. They perforate all the layers (above the
WOC). The wellbore radius of each well is 0.25 ft. The well controls can be the bottom hole pressure, water

injection rate, oil production rate, and liquid production rate controls with a water cut limit of 0.95.

Due to the layer structure in the vertical direction of this reservoir, we again divide its domain into

hexagonal prisms, as seen in Fig. 3. The number of control volumes is 2088� 4. The CVFA method is used

for the discretization of the governing equations. We run the simulator with ðdP Þmax ¼ 300 psia,

ðdSwÞmax ¼ 0:05, and ðdPbÞmax ¼ 300 psia (see Section 4.2) and stop running at 4740 days, using the fully

implicit and sequential solution methods. Fig. 12 is the water saturation for the fourth layer. Figs. 13–15 are

the plots of the oil production rate, water cut, and oil recovery. The comparative results of memory and
computational cost for these two solution methods are listed in Table 5. Figs. 13–15 show that the nu-

merical results obtained from these two methods match very well. Table 5 shows that the sequential method

uses as little as 20.01% of the memory for the fully implicit method to solve the LESs, which is due to the

reduction of the size of the LESs. The sequential method spends just 12.06% of CPU time used by the fully

implicit method to solve the LESs. The total CPU time spent by the sequential method is only 23.89% of

that taken by the fully implicit method.



Fig. 12. Water saturation for an undersaturated oil field.
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Fig. 13. Oil production rate of an undersaturated oil field.
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Fig. 14. Water cut of an undersaturated oil field.
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Fig. 15. Oil recovery of an undersaturated oil field.
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Table 5

Comparison of computational cost and memory for an undersaturated reservoir

Solution method Fully implicit Sequential

CPU time for solution of LES (s) 2790.80 336.55

Total CPU time for simulation (s) 3340.19 798.05

Number of time steps 30 30

Number of time step cuts 0 0

Memory for LES solver (MB) 18.099264 3.621892

Total memory (MB) 26.326132 11.84876
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The reason for reducing the computational cost for reservoir simulation using the sequential method can

be seen as follows. From Table 5, we find that 83.55% of the computational cost is spent on solving the

LESs and other calculations just take 549.39 s for the fully implicit method. But for the sequential method,

only 42.17% of the total CPU time is spent on solving the LESs, and the CPU time taken by other cal-
culations is only 87.89 s less than that used by the fully implicit method. Therefore, the primary reason that

the sequential method is faster than the fully implicit method is that the sequential method can greatly

reduce the cost to solve the LESs. Also, we note that the sequential method requires less memory.

5.3. A saturated reservoir

Two cases are designed to check the validity of the sequential method for simulation of a saturated

reservoir. For the first case, we simply raise the initial bubble point pressure of the oil field described in the

previous section to 1642 psia so that we initially have a saturated reservoir. For the second case, we change

a production well, which is located at an upper part of this field and is shut down at 510 days, into a gas

injection well to improve oil recovery with an upper limit of GOR 0.2 MSCF/RB after 600 days. Its in-

jection rate is 500 MSCF/day.
For these two cases, we run the simulator with the same control parameters as those given in the pre-

vious section, using both the fully implicit and sequential methods. The computational results are shown in

Figs. 16–24. The computational cost and memory usage are stated in Tables 6 and 7. From Figs. 16–19, we

see that the oil production rate, GOR, water cut, and oil recovery obtained from these two methods match

very well for the first case. In this case, the total CPU time taken by the sequential method increases to

34.60% of that for the fully implicit method. However, for the second case, although the oil production rate,

water cut, and oil recovery from the sequential method still match those from the fully implicit method,

there is a deviation between the GORs for these two methods after the 3700 days (see Fig. 22). Also, in this
case, the CPU time for the sequential method to solve the LESs is 18.22% of that for the fully implicit

method, and the total computational time for the former becomes 40.78% of that for the latter. The number

of Newton–Raphson�s iterations taken by the sequential method is 10 more than that for the fully implicit

method.

The nonlinearity caused by the free gas and the bubble point problem is the main reason for these

phenomena. The free gas has a large compressibility, compared with water and oil. It makes a great

contribution to the flow term of the governing equation of the gas component for a grid point of a

reservoir in the saturated state. If the contribution is ignored by the sequential method to obtain a
pressure equation, it will introduce a large approximation error to the resulting pressure equation. Es-

pecially, this may give a wrong direction in which the Newton–Raphson iteration converges at a bubble

point. For a saturated reservoir, the state at a location may transfer from the saturated state to the

undersaturated state. At a bubble point, if the pressure is not correct, wrong PVT data of oil will be used

and a Newton–Raphson iteration will approach a wrong value. For the first case, the free gas comes

from the dissolved gas in the reservoir, and the GOR is just 0.15, which is rather low. The nonlinearity
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Fig. 17. GOR for the water flooding of a saturated field.
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Fig. 16. Oil production rate for the water flooding of a saturated field.
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Fig. 19. Oil recovery for the water flooding of a saturated field.
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Fig. 18. Water cut for the water flooding of a saturated field.
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Fig. 21. Average reservoir pressure for the gas injection of a saturated field.
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Fig. 20. Oil production rate for the gas injection of a saturated field.
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Fig. 23. Water cut for the gas injection of a saturated field.
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Fig. 22. GOR for the gas injection of a saturated field.
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Fig. 24. Oil recovery for the gas injection of a saturated field.

Table 6

Comparison of computational cost and memory for the water flooding of a saturated field

Solution method Fully implicit Sequential

CPU time for solution of LES (s) 2485.88 518.58

Total CPU time for simulation (s) 3067.10 1061.09

Number of time steps 30 30

Number of time step cuts 0 0

Number of Newton–Raphson iterations 104 146

Memory for LES solver (MB) 18.099264 3.621892

Total memory (MB) 26.326132 11.84876

Table 7

Comparison of computational cost and memory for gas injection of a saturated field

Solution method Fully implicit Sequential

CPU time for solution of LES (s) 5008.60 912.93

Total CPU time for simulation (s) 5869.08 2393.66

Number of time steps 30 30

Number of time step cuts 0 0

Number of Newton–Raphson iterations 137 147

Memory for LES solver (MB) 18.099264 3.621892

Total memory (MB) 26.326132 11.84876
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caused by the free gas is weak. The approximation error for the pressure equation introduced by the

sequential method is small. Therefore, its convergence rate is high. However, for the second case, a great

amount of free gas is injected into the reservoir. The nonlinearity caused by the free gas is strong. After
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3700 days, the oil production rate of the field drops quickly, the pressure obtained from the sequential

method is higher than the real value because of ignoring the nonlinearity term caused by the free gas and

water (see Fig. 21), and at this pressure more free gas dissolves into oil and leads to the GOR deviating

from its true value.
6. Conclusions

We have applied the sequential solution method to the black-oil reservoir simulation with unstructured

grids. The CVFA method has been employed for the discretization of the governing equations of the black

oil model. Field-scale simulation models of oil reservoirs have been used to test this solution method for

both the saturated and undersaturated states of these reservoirs.

The numerical experiment results show that the sequential method is convergent and stable for an

undersaturated reservoir, and the results in Section 5.1 match those of VIP-EXECUTIVE very well. During

a Newton–Raphson iteration process, no time step cut occurs. It can reduce computational cost and

memory by 87.94% and 79.99%, respectively, of those for the fully implicit method to solve the LESs of the
model in Section 5.2. For a saturated reservoir, the convergence and accuracy of the sequential method

depends on whether free gas is injected. If there is no gas injection, this solution method is still convergent

and accurate and it can reduce the total computational cost by 65.40% of that for the fully implicit method

for the first case in Section 5.3. But, in the case of gas injection, the pressure and GOR obtained from this

method may deviate from those obtained from the fully implicit method, even though it is convergent. In

summary, the sequential solution method can greatly reduce computational cost and save memory of

reservoir simulation with unstructured grids by reducing the size of the LESs to be solved for undersatu-

rated reservoirs.
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Appendix A. Linearization of the governing equations and well control equations

In this section we carry out the linearization of the governing equations of the black-oil model using

Newton–Raphson�s procedure. Again, the unknown variables are different under the different states of a

reservoir, so we discuss them separately,
A.1. Undersaturated state

Under the undersaturated state, the unknowns are p ¼ po, sw, and pb. After substitution of Eq. (2.4) into

Eqs. (2.1)–(2.3), the integral forms of the resulting equations on each control volume Vi , i ¼ 1; 2; . . . ;N , can
be discretized by the backward Euler difference method in time and linearized by the Newton–Raphson

procedure as follows. Set, for y ¼ w; o,
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H 1
y ¼ KKry

ly

qYS

By
þ KKry

o

op
qYS

lyBy

 !
dp þ KqYS

lyBy

oKry

osw
dsw;

H 2
y ¼ KKry

ly

qYS

By
rðdpÞ;

H 3
y;k;m ¼ qy;k;m þ

lyBy

qYS
qy;k;m

o

op
qYS

lyBy
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dp þ qy;k;m
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dpbh;kð � dpÞ;

H 4;nþ1
y;l ¼ /

qYS

By
sy

� �ðnþ1Þ

l

� /
qYS

By
sy

� �ðnÞ

þ cr/a
qYS

By
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�
þ /sy

o

op
qYS

By

� ��ðnþ1Þ

l

ðdpÞðnþ1Þ
l ;

where n indicates the nth time step and l represents the lth iteration of the Newton–Raphson procedure.

Then, for the water component, we haveZ
oVi

fH 1
wg

ðnþ1Þ
l ðrUwÞðnþ1Þ

l � ndAþ
Z
oVi

½H 2
w�
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;

for the oil component,
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and, for the gas component,Z
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Under this state, the well controls are implicitly treated as follows. For a bottom hole pressure control of

a kth well, the bottom pressure is constant:

dpbh;k ¼ 0:

For the water injection rate control of a kth well, by (2.8), the well constraint can be treated as

XMw;k
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Similarly, for the oil production rate control of a kth well, the well constraint has the form
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and for the liquid flow rate control of production of a kth well,
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A.2. Saturated state

Under the saturated state, the unknowns are p ¼ po, sw, and so. In a similar manner as in Appendix A.1,

the integral forms of the governing equations can be linearized. For the water component, the form is the

same as that in the undersaturated state. For the oil component, we haveZ
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and, for the gas component,
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:

Under the saturated state, the bottom hole pressure and water injection rate controls have the same form

as those under the undersaturated state. The gas injection and production rate controls are, respectively,

treated as
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The oil and liquid production rate controls are, respectively, linearized by
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Appendix B. Discretization of the governing equations

As noted, the discretization method we use for the governing equations of the black-oil model is the

CVFA method. We very briefly review the discretization of these equations by this method. For more

details, refer to [16].

Let the lth iteration values of the water and oil potentials on boundary eij (j ¼ 1; 2; . . . ;Ni) of a

control volume Vi at the ðnþ 1Þth time step be approximated by (2.17) and the lth iteration values of the

increments dp, dsw, and dpb be approximated by (2.18), where Ni is the number of boundaries of Vi . Then
the linearized governing equations under the undersaturated state given in Appendix A.1 can be dis-

cretized as follows:
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:

Similarly, using (2.20) and (2.21), the linearized governing equations under the saturated state given in

Appendix A.2 can be discretized.
Appendix C. Pressure equations

We now derive the pressure equations in the sequential solution method.

For a fixed control volume Vi , ðdsiwj;r
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l and ðdpibj;rÞ
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l are set to zero in the left-hand sides of the

linearized and discretized governing equations in the undersaturated state to obtain
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:

To eliminate the unknowns ðdswÞðnþ1Þ
l and ðdpbÞðnþ1Þ

l in the right-hand sides of the above equations,
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Then multiply the second and third equations in this appendix by D2;i and D3;i, respectively, and combine

the resulting equations with the first equation to obtain the pressure equation for Vi . Analogously, ðdswÞðnþ1Þ
l

and ðdsoÞðnþ1Þ
l are set to zero in the left-hand sides of the linearized and discretized equations under the

saturated state to obtain the pressure equations.
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